Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycansAbstract The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically converting membrane-bound glycosyltransferases (GTs) into water soluble biocatalysts, which are expressed at high levels in the cytoplasm of living cells with retention of biological activity. We demonstrate the universality of the approach through facile production of 98 difficult-to-express GTs, predominantly of human origin, across several commonly used expression platforms. Using a subset of these water-soluble enzymes, we perform structural remodeling of both free and protein-linked glycans including those found on the monoclonal antibody therapeutic trastuzumab. Overall, our strategy for rationally redesigning GTs provides an effective and versatile biosynthetic route to large quantities of diverse, enzymatically active GTs, which should find use in structure-function studies as well as in biochemical and biomedical applications involving complex glycomolecules.more » « less
 - 
            The wave function of a Tonks-Girardeau (T-G) gas of strongly interacting bosons in one dimension maps onto the absolute value of the wave function of a noninteracting Fermi gas. Although this fermionization makes many aspects of the two gases identical, their equilibrium momentum distributions are quite different. We observed dynamical fermionization, where the momentum distribution of a T-G gas evolves from bosonic to fermionic after its axial confinement is removed. The asymptotic momentum distribution after expansion in one dimension is the distribution of rapidities, which are the conserved quantities associated with many-body integrable systems. Our measurements agree well with T-G gas theory. We also studied momentum evolution after the trap depth is suddenly changed to a new nonzero value, and we observed the theoretically predicted bosonic-fermionic oscillations.more » « less
 
An official website of the United States government 
				
			